Let Γ be an irreducible lattice in a product of n infinite irreducible
complete Kac-Moody groups of simply laced type over finite fields. We show that
if n is at least 3, then each Kac-Moody groups is in fact a simple algebraic
group over a local field and Γ is an arithmetic lattice. This relies on
the following alternative which is satisfied by any irreducible lattice
provided n is at least 2: either Γ is an S-arithmetic (hence linear)
group, or it is not residually finite. In that case, it is even virtually
simple when the ground field is large enough.
More general CAT(0) groups are also considered throughout.Comment: Subsection 2.B was modified and an example was added ther