Abstract

We used Nuclear Track Detectors (NTD) CR39 and Makrofol for many purposes: i) Exposures at the SPS and at lower energy accelerator heavy ion beams for calibration purposes and for fragmentation studies. ii) Searches for GUT and Intermediate Mass Magnetic Monopoles (IMM), nuclearites, Q-balls and strangelets in the cosmic radiation. The MACRO experiment in the Gran Sasso underground lab, with ~1000 m^2 of CR39 detectors (plus scintillators and streamer tubes), established an upper limit for superheavy GUT poles at the level of 1.4x10^-16 cm^-2 s^-1 sr^-1 for 4x10^-5 <beta<1. The SLIM experiment at the high altitude Chacaltaya lab (5230 m a.s.l.), using 427 m^2 of CR39 detectors exposed for 4.22 y, gave an upper limit for IMMs of ~1.3x10^-15 cm^-2 s^-1 sr^-1. The experiments yielded interesting upper limits also on the fluxes of the other mentioned exotic particles. iii) Environmental studies, radiation monitoring, neutron dosimetry.Comment: Talk given at "New Trends In High-Energy Physics" (experiment, phenomenology, theory) Yalta, Crimea, Ukraine, September 27-October 4, 200

    Similar works