HD17156b is a newly-found transiting extrasolar giant planet (EGP) that
orbits its G-type host star in a highly eccentric orbit (e~0.67) with an
orbital semi-major axis of 0.16 AU. Its period, 21.2 Earth days, is the longest
among the known transiting planets. The atmosphere of the planet undergoes a
27-fold variation in stellar irradiation during each orbit, making it an
interesting subject for atmospheric modelling. We have used a three-dimensional
model of the upper atmosphere and ionosphere for extrasolar gas giants in order
to simulate the progress of HD17156b along its eccentric orbit. Here we present
the results of these simulations and discuss the stability, circulation, and
composition in its upper atmosphere. Contrary to the well-known transiting
planet HD209458b, we find that the atmosphere of HD17156b is unlikely to escape
hydrodynamically at any point along the orbit, even if the upper atmosphere is
almost entirely composed of atomic hydrogen and H+, and infrared cooling by H3+
ions is negligible. The nature of the upper atmosphere is sensitive to to the
composition of the thermosphere, and in particular to the mixing ratio of H2,
as the availability of H2 regulates radiative cooling. In light of different
simulations we make specific predictions about the thermosphere-ionosphere
system of HD17156b that can potentially be verified by observations.Comment: 31 pages, 42 eps figure