We present a contribution to the structure theory of locally compact groups.
The emphasis is on compactly generated locally compact groups which admit no
infinite discrete quotient. It is shown that such a group possesses a
characteristic cocompact subgroup which is either connected or admits a
non-compact non-discrete topologically simple quotient. We also provide a
description of characteristically simple groups and of groups all of whose
proper quotients are compact. We show that Noetherian locally compact groups
without infinite discrete quotient admit a subnormal series with all
subquotients compact, compactly generated Abelian, or compactly generated
topologically simple. Two appendices introduce results and examples around the
concept of quasi-product.Comment: Index added; minor change