research

Black-hole binary simulations: the mass ratio 10:1

Abstract

We present the first numerical simulations of an initially non-spinning black-hole binary with mass ratio as large as 10:1 in full general relativity. The binary completes approximately 3 orbits prior to merger and radiates about 0.415% of the total energy and 12.48% of the initial angular momentum in the form of gravitational waves. The single black hole resulting from the merger acquires a kick of about 66.7 km/s relative to the original center of mass frame. The resulting gravitational waveforms are used to validate existing formulas for the recoil, final spin and radiated energy over a wider range of the symmetric mass ratio parameter eta=M1*M2/(M1+M2)^2 than previously possible. The contributions of l > 2 multipoles are found to visibly influence the gravitational wave signal obtained at fixed inclination angles.Comment: To match published versio

    Similar works