A breakthrough in the theory of (type A) Macdonald polynomials is due to
Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these
polynomials in terms of fillings of Young diagrams. Recently, Ram and Yip gave
a formula for the Macdonald polynomials of arbitrary type in terms of the
corresponding affine Weyl group. In this paper, we show that a
Haglund-Haiman-Loehr type formula follows naturally from the more general
Ram-Yip formula, via compression. Then we extend this approach to the
Hall-Littlewood polynomials of type C, which are specializations of the
corresponding Macdonald polynomials at q=0. We note that no analog of the
Haglund-Haiman-Loehr formula exists beyond type A, so our work is a first step
towards finding such a formula