research

Secondary Indexing in One Dimension: Beyond B-trees and Bitmap Indexes

Abstract

Let S be a finite, ordered alphabet, and let x = x_1 x_2 ... x_n be a string over S. A "secondary index" for x answers alphabet range queries of the form: Given a range [a_l,a_r] over S, return the set I_{[a_l;a_r]} = {i |x_i \in [a_l; a_r]}. Secondary indexes are heavily used in relational databases and scientific data analysis. It is well-known that the obvious solution, storing a dictionary for the position set associated with each character, does not always give optimal query time. In this paper we give the first theoretically optimal data structure for the secondary indexing problem. In the I/O model, the amount of data read when answering a query is within a constant factor of the minimum space needed to represent I_{[a_l;a_r]}, assuming that the size of internal memory is (|S| log n)^{delta} blocks, for some constant delta > 0. The space usage of the data structure is O(n log |S|) bits in the worst case, and we further show how to bound the size of the data structure in terms of the 0-th order entropy of x. We show how to support updates achieving various time-space trade-offs. We also consider an approximate version of the basic secondary indexing problem where a query reports a superset of I_{[a_l;a_r]} containing each element not in I_{[a_l;a_r]} with probability at most epsilon, where epsilon > 0 is the false positive probability. For this problem the amount of data that needs to be read by the query algorithm is reduced to O(|I_{[a_l;a_r]}| log(1/epsilon)) bits.Comment: 16 page

    Similar works