A stationary viscous jet falling from an oriented nozzle onto a moving
surface is studied, both theoretically and experimentally. We distinguish three
flow regimes and classify them by the convexity of the jet shape (concave,
vertical and convex). The fluid is modeled as a Newtonian fluid, and the model
for the flow includes viscous effects, inertia and gravity. By studying the
characteristics of the conservation of momentum for a dynamic jet, the boundary
conditions for each flow regime are derived, and the flow regimes are
characterized in terms of the process and material parameters. The model is
solved by a transformation into an algebraic equation. We make a comparison
between the model and experiments, and obtain qualitative agreement