We present hybrid PIC simulations of fast electron transport and energy
deposition in pre-compressed fusion targets, taking full account of collective
magnetic effects and the hydrodynamic response of the background plasma.
Results on actual ignition of an imploded fast ignition configuration are shown
accounting for the increased beam divergence found in recent experiments [J.S.
Green et al., Phys. Rev. Lett. 100, 015003 (2008)] and the reduction of the
electron kinetic energy due to profile steepening predicted by advanced PIC
simulations [B. Chrisman et al. Phys. Plasmas 15, 056309 (2008)]. Target
ignition is studied as a function of injected electron energy, distance of
cone-tip to dense core, initial divergence and kinetic energy of the
relativistic electron beam. We found that beam collimation reduces
substantially the ignition energies of the cone-guided fuel configuration
assumed here.Comment: 15 pages, 9 figures. accepted for publication in Plasma Physics and
Controlled Fusio