A path integral approach to quantum physics has been developed. Fractional
path integrals over the paths of the L\'evy flights are defined. It is shown
that if the fractality of the Brownian trajectories leads to standard quantum
and statistical mechanics, then the fractality of the L\'evy paths leads to
fractional quantum mechanics and fractional statistical mechanics. The
fractional quantum and statistical mechanics have been developed via our
fractional path integral approach. A fractional generalization of the
Schr\"odinger equation has been found. A relationship between the energy and
the momentum of the nonrelativistic quantum-mechanical particle has been
established. The equation for the fractional plane wave function has been
obtained. We have derived a free particle quantum-mechanical kernel using Fox's
H function. A fractional generalization of the Heisenberg uncertainty relation
has been established. Fractional statistical mechanics has been developed via
the path integral approach. A fractional generalization of the motion equation
for the density matrix has been found. The density matrix of a free particle
has been expressed in terms of the Fox's H function. We also discuss the
relationships between fractional and the well-known Feynman path integral
approaches to quantum and statistical mechanics.Comment: 27 page