research

Universality of shear-banding instability and crystallization in sheared granular fluid

Abstract

The linear stability analysis of an uniform shear flow of granular materials is revisited using several cases of a Navier-Stokes'-level constitutive model in which we incorporate the global equation of states for pressure and thermal conductivity (which are accurate up-to the maximum packing density νm\nu_{m}) and the shear viscosity is allowed to diverge at a density νμ\nu_\mu (<νm< \nu_{m}), with all other transport coefficients diverging at νm\nu_{m}. It is shown that the emergence of shear-banding instabilities (for perturbations having no variation along the streamwise direction), that lead to shear-band formation along the gradient direction, depends crucially on the choice of the constitutive model. In the framework of a dense constitutive model that incorporates only collisional transport mechanism, it is shown that an accurate global equation of state for pressure or a viscosity divergence at a lower density or a stronger viscosity divergence (with other transport coefficients being given by respective Enskog values that diverge at νm\nu_m) can induce shear-banding instabilities, even though the original dense Enskog model is stable to such shear-banding instabilities. For any constitutive model, the onset of this shear-banding instability is tied to a {\it universal} criterion in terms of constitutive relations for viscosity and pressure, and the sheared granular flow evolves toward a state of lower "dynamic" friction, leading to the shear-induced band formation, as it cannot sustain increasing dynamic friction with increasing density to stay in the homogeneous state. A similar criterion of a lower viscosity or a lower viscous-dissipation is responsible for the shear-banding state in many complex fluids.Comment: 26 page

    Similar works