The phenomenon of spin resonance has had far reaching influence since its
discovery nearly 70 years ago. Electron spin resonance (ESR) driven by high
frequency magnetic fields has informed our understanding of quantum mechanics,
and finds application in fields as diverse as medicine and quantum information.
Spin resonance induced by high frequency electric fields, known as electric
dipole spin resonance (EDSR), has also been demonstrated recently. EDSR is
mediated by spin-orbit interaction (SOI), which couples the spin degree of
freedom and the momentum vector. Here, we report the observation of a novel
spin resonance due to SOI that does not require external driving fields.
Ballistic spin resonance (BSR) is driven by an internal spin-orbit field that
acts upon electrons bouncing at gigaHertz frequencies in narrow channels of
ultra-clean two-dimensional electron gas (2DEG). BSR is manifested in
electrical measurements of pure spin currents as a strong suppression of spin
relaxation length when the motion of electrons is in resonance with spin
precession. These findings point the way to gate-tunable coherent spin
rotations in ballistic nanostructures without external a.c. fields.Comment: 24 pages, including supplementary material