research

Analogue of Newton-Puiseux series for non-holonomic D-modules and factoring

Abstract

We introduce a concept of a fractional-derivatives series and prove that any linear partial differential equation in two independent variables has a fractional-derivatives series solution with coefficients from a differentially closed field of zero characteristic. The obtained results are extended from a single equation to DD-modules having infinite-dimensional space of solutions (i. e. non-holonomic DD-modules). As applications we design algorithms for treating first-order factors of a linear partial differential operator, in particular for finding all (right or left) first-order factors

    Similar works