We take on a Random Matrix theory viewpoint to study the spectrum of certain
reversible Markov chains in random environment. As the number of states tends
to infinity, we consider the global behavior of the spectrum, and the local
behavior at the edge, including the so called spectral gap. Results are
obtained for two simple models with distinct limiting features. The first model
is built on the complete graph while the second is a birth-and-death dynamics.
Both models give rise to random matrices with non independent entries.Comment: accepted in ALEA, March 201