research

Dark state experiments with ultracold, deeply-bound triplet molecules

Abstract

We examine dark quantum superposition states of weakly bound Rb2 Feshbach molecules and tightly bound triplet Rb2 molecules in the rovibrational ground state, created by subjecting a pure sample of Feshbach molecules in an optical lattice to a bichromatic Raman laser field. We analyze both experimentally and theoretically the creation and dynamics of these dark states. Coherent wavepacket oscillations of deeply bound molecules in lattice sites, as observed in one of our previous experiments, are suppressed due to laser-induced phase locking of molecular levels. This can be understood as the appearance of a novel multilevel dark state. In addition, the experimental methods developed help to determine important properties of our coupled atom / laser system.Comment: 20 pages, 9 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020