slides

Simulating acceleration and radiation processes in X-ray binaries

Abstract

The high energy emission of microquasars is thought to originate from high energy particles. Depending on the spectral state, the distribution of these particles can be thermal with a high temperature (typically 100 keV) or non-thermal and extending to even higher energy. The properties of high energy plasmas are governed by a rich microphysics involving particle-particle collisions and particles-photons interactions. We present a new code developed to address the evolution of relativistic plasmas. This one-zone code focuses on the microphysics and solves the coupled kinetic equations for particles and photons, including Compton scattering, synchrotron emission and absorption, pair production and annihilation, bremsstrahlung emission and absorption, Coulomb interactions, and prescriptions for additional particle acceleration and heating. It can in particular describe mechanisms such a thermalisation by synchrotron self-absorption and Coulomb collisions. Using the code, we investigate whether various acceleration processes, namely thermal heating, non-thermal acceleration and stochastic acceleration, can reproduce the different spectral states of microquasars. Premilinary results are presented.Comment: 9 pages, 6 figures, proceedings of the VII Microquasar Workshop: Microquasars and Beyond, September 1-5 2008, Foca, Izmir, Turkey; accepted for publication in Po

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 08/11/2016