The time-course of perceptual decision-making: temporal and spatial dynamics of scalp-recorded oscillatory phase and amplitude

Abstract

Thesis (Ph.D.) - Indiana University, Psychological & Brain Sciences, 2014In natural conditions the brain has to actively integrate information about the current percept with information about past/present behavioral demands and cognitive states of the observer along with future outcomes related to a decision. Despite of somewhat extensive research, we still know little about the neuro-cognitive mechanisms and temporal dynamics allowing an observer to perceive an object and rapidly make a decision about it. This dissertation is based on previous research suggesting that there must be at least two cognitive processes underlying a task such as perceptual decision-making. An early mechanism related to the perception of information and a later one related to the subsequent decision-making process. Evidence has led to the proposal of the match-and-utilization model, stating that early synchronization in the gamma band is the result of a match between the current percept and memory/attentional processes. In contrast, later synchronization would reflect the utilization/readout of the early matching process; updating or influencing future processes. Evidence for this two-stage process, comes mainly from the classic event-related potential literature and, in lesser degree, from newer measures such as oscillatory amplitude. Moreover, the exploration of multivariate nonlinear techniques derived from the study of synchronization between and within neural systems, has been largely neglected in the literature. Thus, explorations of a more complete electrophysiological picture than the one provided by ERP or ERSP analyses alone, can provide us more information about the relation between neural oscillations and ERP components as electrophysiological markers of cognitive events. This is important because differential roles for frequency, phase, and amplitude as different information coding strategies in neural systems have been theoretically suggested and empirically shown. The present work presents for the first time, concomitant analyses of phase and amplitude dynamics in the context of perceptual decision-making. In this dissertation I present a parametrical task that can effectively separate the visual properties of the stimuli from the decision regarding the task at hand. Results indicate that the experimental design effectively separated stimulus properties from task demands. Additionally, I suggest distinct roles for the temporal dynamics of gamma-band oscillations. Finally, a central role for alpha oscillations is suggested

    Similar works