Transition metal complexes of some bis(thiosemicarbazones) derived from 2,6-diacetylpyridine and N4-substituted thiosemicarbazides:Synthesis, spectral and structural studies

Abstract

Coordination chemistry of pentadentate 2,6-diacetylpyridine bis(thiosemicarbazone) Schiff base ligands has been intensively studied due to the versatility of the molecular chain in order to obtain very different geometries as well as their broad therapeutic activity. Metal complexes of thiosemicarbazone with aldehydes and ketones have been widely reported. But there have been fewer reports on potential pentadentate bis(thiosemicarbazones) formed from 2,6-diacetylpyridine. Keeping these in view, we have synthesized four bis(thiosemicarbazone) systems with 2,6-diacetylpyridine. In the present work, the chelating behavior of bis(thiosemicarbazones) are studied, with the aim of investigating the influence of coordination exerts on their conformation and or configuration, in connection with the nature of the metal and of the counter ion. The selection of the 2,6-diacetylpyridine as the ketonic part was based on its capability to form polynuclear complexes with different coordination number. The doubled armed bis(thiosemicarbazones) can coordinate to a metal centre as dianionic ligand by losing its amide protons or it can coordinate as monoanionic ligand by losing its amide proton from one of the thiosemicarbazone moiety or it can also be coordinate as neutral ligand. Hence it is interesting to explore the coordinating capabilities of these ligands whether in neutral form or anionic form and to study the structural variations occurring in the ligands during complexation such as change in conformation.Department of Applied Chemistry, Cochin university of Science and Technolog

    Similar works