Sulfur-rich organic films deposited by plasma- and vacuum-ultraviolet (VUV) photo-polymerization

Abstract

Thiol (SH)-terminated surfaces have been progressively gaining interest over the past years as a consequence of their widespread potential applications. Here, SH-terminated thin films have been prepared by “co-polymerizing” gas mixtures comprising ethylene (C2H4) or butadiene (C4H6) with hydrogen sulfide (H2S). This has been accomplished by either vacuum-ultraviolet (VUV) irradiation of the flowing gas mixtures with near-monochromatic radiation from a Kr lamp, or by low-pressure r.f. plasma-enhanced chemical vapor deposition (PECVD). Varying the gas mixture ratio, R, allows one to control the films’ sulfur content as well as the thiol concentration [[BOND]SH]. The deposits were characterized by X-ray photoelectron spectroscopy (XPS), before and after chemical derivatization with N-ethylmaleimide, and by ATR FTIR. VUV- and plasma-prepared coatings were found to possess very similar structures and characteristics, showing chemically bonded sulfur concentrations, [S], up to 48 at% and [[BOND]SH] up to 3%. All coatings remained essentially unchanged in thickness after immersion in water for 24 h

    Similar works