Modeling High Altitude Electron Density Plumes Using Direct Numerical Simulation

Abstract

Electron densities form field-aligned structured regions in the natural ionosphere and after a high altitude nuclear explosion (HANE). These electron densities, known as plumes, are made up of many smaller individual field-aligned regions called striations. Striation modeling for systems effects has traditionally been done use a statistical approach. This statistical approach evolves different moments of the electron density. Due to lack of test data it has never been validated. The purpose of this project was to use a direct numerical simulation to solve equations governing the differential motion of individual striations. It was done in five steps: 1) Transport a single striation, 2) solve potential equation, 3) combine transport and potential equations, 4) optimize combined solver, and 4) simulate a fully-striated plume for comparison with the statistical model

    Similar works