We study the solid mechanical properties of several thixotropic suspensions
as a function of the shear stress history applied during their flow stoppage
and their aging in their solid state. We show that their elastic modulus and
yield stress depend strongly on the shear stress applied during their
solid-liquid transition (i.e., during flow stoppage) while applying the same
stress only before or only after this transition may induce only second-order
effects: there is negligible dependence of the mechanical properties on the
preshear history and on the shear stress applied at rest. We also found that
the suspensions age with a structuration rate that hardly depends on the stress
history. We propose a physical sketch based on the freezing of a microstructure
whose anisotropy depends on the stress applied during the liquid-solid
transition to explain why the mechanical properties depend strongly on this
stress. This sketch points out the role of the internal forces in the colloidal
suspensions' behavior. We finally discuss briefly the macroscopic consequences
of this phenomenon and show the importance of using a controlled-stress
rheometer