Single and entangled photon manipulation for photonic quantum technologies

Abstract

Photonic quantum technologies that harness the fundamental laws of quantum physics open the possibility of developing quantum computing and communication that could show unprecedented computational power on specific problems and unconditional information security, respectively. However, the lack of high-efficiency single-photon sources and integrated photonic circuits that can generate, manipulate and analyse entanglement states are the major hurdles to demonstrate the quantum advantages. The potential solutions are clearly explained in this thesis. Chapter 1 provides a brief overview that explains the theme of each chapter. Chapter 2 emphasises the importance of a high-efficiency single-photon source and an integrated time-bin entanglement chip, after explaining the advantages of photonic quantum computing and communication over their classical counterparts. In Chapter 3, three different temporal multiplexing schemes are experimentally demonstrated as the potential solutions to build a high-efficiency single-photon source. Chapter 3 also identifies the potential limitations of temporal multiplexing with high repetition rate. In Chapter 4, the linear processing circuits and nonlinear photon source are separately demonstrated in a low-loss double-stripe silicon nitride waveguide. In the final section of Chapter 4, an integrated silicon nitride time-bin entanglement chip that combines linear processing circuits and nonlinear photon sources is demonstrated as a potential solution to build a robust, scalable and cost-efficient quantum network in the real world. After a succinct summarisation, the final chapter briefly discusses the promising strategies and platforms to build an integrated high-efficiency single-photon source and an integrated quantum node with broad bandwidth and long storage time

    Similar works