OpenFOAM Finite Volume Solver for Fluid-Solid Interaction

Abstract

This paper describes a self-contained parallel fluid-structure interaction solver based on a finite volume discretisation, where a strongly coupled partitioned solution procedure is employed. The incompressible fluid flow is described by the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian form, and the solid deformation is described by the Saint Venant-Kirchhoff hyperelastic model in the total Lagrangian form. Both the fluid and the solid are discretised in space using the second-order accurate cell-centred finite volume method, and temporal discretisation is performed using the second-order accurate implicit scheme. The method, implemented in open-source software OpenFOAM, is parallelised using the domain decomposition approach and the exchange of information at the fluid-solid interface is handled using global face zones. The performance of the solver is evaluated in standard two- and threedimensional cases and excellent agreement with the available numerical results is obtained

    Similar works