The first spectral numerical simulations of 16 orbits, merger, and ringdown
of an equal-mass non-spinning binary black hole system are presented.
Gravitational waveforms from these simulations have accumulated numerical phase
errors through ringdown of ~0.1 radian when measured from the beginning of the
simulation, and ~0.02 radian when waveforms are time and phase shifted to agree
at the peak amplitude. The waveform seen by an observer at infinity is
determined from waveforms computed at finite radii by an extrapolation process
accurate to ~0.01 radian in phase. The phase difference between this waveform
at infinity and the waveform measured at a finite radius of r=100M is about
half a radian. The ratio of final mass to initial mass is M_f/M = 0.95162 +-
0.00002, and the final black hole spin is S_f/M_f^2=0.68646 +- 0.00004.Comment: 15 pages, 11 figures; New figure added, text edited to improve
clarity, waveform made availabl