Experimental Investigation and Modelling of the Formation Kinetics of CuInSe2-based Semiconductor Thin-Films for Solar Cell Production

Abstract

Die Chalkopyrit-Halbleiter CuInSe2 bzw. Cu(In,Ga)Se2 werden als Absorbermaterialien bei der industriellen Produktion der sog. CIS-Solarzellen eingesetzt. Die stark lichtabsorbierenden Dünnschichten werden dabei im sog. Stacked-Elemental-Layer (SEL) Prozess hergestellt. Dieses Verfahren ist dadurch gekennzeichnet, dass zunächst metallische Schichtstapel und Selen durch physikalische Depositionsverfahren auf ein Substrat aufgebracht werden. Aus diesem sog. Precursor wird anschließend durch thermische Prozessierung (bis etwa 550 °C) der Halbleiterabsorber synthetisiert. In dieser Arbeit wurden die chemischen Reaktionswege bei der SEL-Synthese dieser Chalkopyrite aufgeklärt. Dazu wurden Teilsysteme des CuInSe2 bzw. Cu(In,Ga)Se2 mittels dynamischer Differenz-Kalorimetrie, Röntgendiffraktometrie und in-situ Leitfähigkeitsmessung untersucht. Darüber hinaus konnten mit Hilfe der kalorimetrischen und Leitfähigkeits-Analysen die ratenbestimmenden Schritte, d.h. die kinetischen Mechanismen, bei der Selenisierung der metallischen Schichten und der Umwandlungen binärer Indium- und Galliumselenide ermittelt werden. Diese kinetischen Analysen wurden durch thermodynamische Modelle der binären Selenide ergänzt. Die Reaktionswege und Mechanismen bei der Synthese von CuInSe2 bzw. Cu(In,Ga)Se2 im SEL-Verfahren sind im Folgenden kurz zusammengefasst: CuInSe2: Aus den metallischen Schichten entsteht zunächst eine Cu11In9-Phase, die durch Selen in einer gerichteten, von der Kinetik der Grenzfläche kontrollierten Reaktion abgebaut wird. Der dominierende Vorgang ist dabei die Herauslösung des Kupfers aus dem Cu11In9, wobei CuSe2 entsteht. Dabei wird aus der intermetallischen Verbindung Cu11In9 elementares Indium freigesetzt, welches rasch zu In4Se3 weiterreagiert. Dessen anschließende Umwandlung in InSe wird durch Keimbildungs- und Kornwachstumsprozesse bestimmt. Bei der Bildung dieser Indiumselenide wird der Selenvorrat des Precursors vollständig verbraucht, weswegen die Umwandlung des CuSe2 zu CuSe erzwungen wird. CuSe wandelt sich schließlich peritektisch in Cu(2-x)Se um. Sowohl aus CuSe als auch aus Cu(2-x)Se entsteht mit InSe im Temperaturbereich von 340-550 °C schließlich CuInSe2. Cu(In,Ga)Se2: Die intermetallischen Reaktionen im quaternären Precursor bilden evtl. Cu9Ga4 und schließlich Cu11(In,Ga)9. Diese Phase wird durch Reaktion mit Selen abgebaut, wobei sich wiederum Cu9Ga4 am Substrat anreichert. Cu9Ga4 wird schließlich unter Bildung von Cu(Ga)Se2 selenisiert, welches in GaSe und CuSe zerfällt. Erst nach Umwandlung des CuSe in Cu(2-x)Se kann der Chalkopyrit CuGaSe2 entstehen. Parallel zu diesen Reaktionen verlaufen identisch zum ternären System die Reaktionen des Indiums unter Synthese von CuInSe2. Dies bildet mit CuGaSe2 am Ende des Reaktionsprozesses die Halbleiter-Mischkristallphase Cu(In,Ga)Se2 bei Temperaturen von 430-550 °C. Zur Identifikation der kinetischen Mechanismen der einzelnen Reaktionen wurden halbquantitative numerische Modellierungen genutzt. Sie erlauben u.a. eine Vorhersage der Reaktionsraten bei beliebigen Temperatur-Zeit Verläufen des Syntheseprozesses. Mit diesen Reaktionsmodellen wurde auch der Einfluss des Precursoraufbaus auf die Synthesereaktionen und deren Reproduzierbarkeit untersucht. Damit können verschiedene Überlegungen zur Optimierung des industriellen SEL-Prozesses abgeleitet werden. Es zeigt sich, dass die Morphologie der Metallschichten des Precursors nur geringen Einfluss auf die Synthesekinetik der Absorber hat. Dagegen ist die Verteilung der Phasen in den Metallschichten des Precursors von großer Bedeutung für die Reproduzierbarkeit des SEL-Prozesses. Insbesondere sind langsam reagierende oder entnetzende Zwischenschichten zu vermeiden. Situationen, in denen verschiedene konkurrierende Reaktionen einer Phase möglich sind, führen ebenfalls nicht zu reproduzierbaren Reaktionsabläufen. Daher sollte beispielsweise im Prozess vermieden werden, dass sich Ga-reiche Phasen wie Cu9Ga4 oder elementares Ga zwischen Ga-armen Phasen und Selen befinden. Als weitere Erkenntnis konnten die Ursachen für die im SEL-Prozess auftretende Segregation des Galliums an der Rückseite des Absorbermaterials aufgeklärt werden. Die Chalkopyritsynthese läuft, wie diese Arbeit zeigt, von der Precursoroberfläche in Richtung des Substrats ab. Dabei kommt es zum einen durch eine Anreicherung des Galliums am Substrat in den metallischen Precursorschichten bereits in einem frühen Stadium des Syntheseprozesses zu einer inhomogenen Ga-Verteilung. Zum anderen verzögern verschiedene Mechanismen bei der Selenisierung des Galliums die Bildung von CuGaSe2. Somit kristallisiert erst am Ende des SEL-Prozesses, und damit an der Rückseite des Absorbers, Ga-reicher Chalkopyrit.The chalcopyrite semiconductors CuInSe2 or Cu(In,Ga)Se2 are used as an absorber material for the industrial production of the so-called CIS solar cells. The thin-films are manufactured by the so-called stacked-elemental-layer (SEL) process. This technique is characterized by the physical deposition of metallic layers and selenium on a substrate. From this so-called precursor the semiconducting absorber is then synthesized by thermal processing (up to about 550 °C). In this work the chemical reaction pathways of the SEL-synthesis of these chalcopyrites were determined. For this purpose subsystems of CuInSe2 and Cu(In,Ga)Se2, respectively, were examined by dynamic scanning calorimetry, X-ray diffraction and in-situ conductivity measurements. Moreover, the rate-controlling reaction steps, i.e. the kinetic mechanisms, of the selenization of the metallic thin-films and the transformations of binary indium- and gallium-selenides could be determined by these calorimetric and conductivity measurements. These kinetic analyses were complemented by thermodynamic models of the binary selenides. The chemical reaction pathways and mechanisms of the synthesis of CuInSe2 and Cu(In,Ga)Se2, respectively, by the SEL method are summarized below: CuInSe2: First, from the metallic thin-films a Cu11In9 phase is formed, which is decomposed by selenium in a directional process kinetically controlled by a phase boundary reaction. The extraction of the Cu-atoms from the Cu11In9 crystal structure and the formation of CuSe2 dominate this process. Thereby the intermetallic compound Cu11In9 releases elemental Indium which quickly forms In4Se3. Its subsequent transformation into InSe is kinetically controlled by nucleation and growth processes. By the formation of the indium selenides the selenium supply of the precursor is completely consumed which forces CuSe2 to transform into CuSe. This phase decomposes peritectically into Cu(2-x)Se. Together with InSe, CuSe as well as Cu(2-x)Se finally synthesize CuInSe2 at temperatures of 340-550 °C. Cu(In,Ga)Se2: The intermetallic reactions in the quaternary precursor eventually form Cu9Ga4 and finally Cu11(In,Ga)9. Latter phase is decomposed by a reaction with selenium, during which Cu9Ga4 is again accumulated at the substrate. Cu9Ga4 is finally selenized forming Cu(Ga)Se2, which decomposes to GaSe and CuSe. Only after the transformation of CuSe into Cu(2-x)Se the chalcopyrite CuGaSe2 can synthesize. At the same time the reactions of the indium take place, which are identical to the ternary system and form CuInSe2. At the end of the reaction process CuInSe2, together with CuGaSe2, finally forms the solid solution phase Cu(In,Ga)Se2 at temperatures of 430-550 °C. Semiquantitative numeric models were used to identify the kinetic mechanisms of the various reactions. These models e.g. allow for a prediction of the reaction rates in arbitrary temperature-time characteristics of the synthesis process. Moreover, with these reaction models the influence of the precursor structure on the chalcopyrite synthesis reactions and their reproducibility was investigated. Several conclusions for the optimization of the industrial SEL process can be drawn. It can be seen that the morphology of the metallic precursor thin-films only has a small influence on the kinetics of the absorber synthesis. On the other hand, the distribution of the phases in the metallic precursor thin-films is crucial for the reproducibility of the SEL process. Especially slowly reacting or dewetting intermediate layers must be avoided. Situations in which a phase can participate in several competing reactions also cannot lead to reproducible reaction kinetics. Therefore it should e.g. be avoided that during the process Ga-rich phases like Cu9Ga4 or elemental Ga are situated in between Ga-poor phases and selenium. As a further result the reasons for the occurring segregation of gallium at the lower surface of the SEL-processed absorber material were clarified. As this work shows, the synthesis of the chalcopyrite in the SEL process is directional from the surface of the precursor to the substrate. Thereby, gallium already accumulates at the substrate during an early state of the thermal process, causing an inhomogeneous Ga-distribution in the metallic precursor thin-films. Second, several mechanisms during the selenization of gallium delay the formation of CuGaSe2 compared to CuInSe2. Therefore, a Ga-rich chalcopyrite can only crystallize at the very end of the SEL process, i.e. near the substrate

    Similar works