Mid-infrared spectroscopy of dense illuminated ridges (or photodissociation
regions, PDRs) suggests dust evolution. Such evolution must be reflected in the
gas physical properties through processes like photo-electric heating or H_2
formation. With Spitzer Infrared Spectrograph (IRS) and ISOCAM data, we study
the mid-IR emission of closeby, well known PDRs. Focusing on the band and
continuum dust emissions, we follow their relative contributions and analyze
their variations in terms of abundance of dust populations. In order to
disentangle dust evolution and excitation effects, we use a dust emission model
that we couple to radiative transfer. Our dust model reproduces extinction and
emission of the standard interstellar medium that we represent with diffuse
high galactic latitude clouds called Cirrus. We take the properties of dust in
Cirrus as a reference to which we compare the dust emission from more excited
regions, namely the Horsehead and the reflection nebula NGC 2023 North. We show
that in both regions, radiative transfer effects cannot account for the
observed spectral variations. We interpret these variations in term of changes
of the relative abundance between polycyclic aromatic hydrocarbons (PAHs,
mid-IR band carriers) and very small grains (VSGs, mid-IR continuum carriers).
We conclude that the PAH/VSG abundance ratio is 2.4 times smaller at the peak
emission of the Horsehead nebula than in the Cirrus case. For NGC2023 North
where spectral evolution is observed across the northern PDR, we conclude that
this ratio is ~5 times lower in the dense, cold zones of the PDR than in its
diffuse illuminated part where dust properties seem to be the same as in
Cirrus. We conclude that dust in PDRs seems to evolve from "dense" to "diffuse"
properties at the small spatial scale of the dense illuminated ridge.Comment: 11 pages, 11 figures, accepted for publication in A&