research

Scaling of the giant dipole resonance widths in hot rotating nuclei from the ground state values

Abstract

The systematics of the giant dipole resonance (GDR) widths in hot and rotating nuclei are studied in terms of temperature T, angular momentum J and mass A. The different experimental data in the temperature range of 1 - 2 MeV have been compared with the thermal shape fluctuation model (TSFM) in the liquid drop formalism using a modified approach to estimate the average values of T, J and A in the decay of the compound nucleus. The values of the ground state GDR widths have been extracted from the TSFM parametrization in the liquid drop limit for the corrected T, J and A for a given system and compared with the corresponding available systematics of the experimentally measured ground state GDR widths for a range of nuclei from A = 45 to 194. Amazingly, the nature of the theoretically extracted ground state GDR widths matches remarkably well, though 1.5 times smaller, with the experimentally measured ground state GDR widths consistently over a wide range of nuclei.Comment: 15 pages, 4 figures, Accepted for publication in Physical Review

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020