We report the analysis of the statistics of the phase fluctuations in the
coda of earthquakes recorded during a temporary experiment deployed at Pinyon
Flats Observatory, California. The practical measurement of the phase is
discussed and the main pitfalls are underlined. For large values, the
experimental distributions of the phase first, second and third derivatives
obey universal power-law decays whose exponents are remarkably well predicted
by circular Gaussian statistics. For small values, these distributions are
flat. The details of the transition between the plateau and the power-law
behavior are governed by the wavelength. The correlation function of the first
phase derivative along the array shows a simple algebro-exponential decay with
the mean free path as the only length scale. Although only loose bounds are
provided in this study, our work suggests a new method to estimate the degree
of heterogeneity of the crComment: 4 figures, submitted to Physical Review Letter