With the rapid development of computer technology,
the design of computers and keyboards moves towards a trend of
slimness. The change of mobile input devices directly influences
users' behavior. Although multi-touch applications allow entering
texts through a virtual keyboard, the performance, feedback, and
comfortableness of the technology is inferior to traditional keyboard,
and while manufacturers launch mobile touch keyboards and
projection keyboards, the performance has not been satisfying.
Therefore, this study discussed the design factors of slim
pressure-sensitive keyboards. The factors were evaluated with an
objective (accuracy and speed) and a subjective evaluation
(operability, recognition, feedback, and difficulty) depending on the
shape (circle, rectangle, and L-shaped), thickness (flat, 3mm, and
6mm), and force (35±10g, 60±10g, and 85±10g) of the keyboard.
Moreover, MANOVA and Taguchi methods (regarding
signal-to-noise ratios) were conducted to find the optimal level of each
design factor. The research participants, by their typing speed (30
words/ minute), were divided in two groups. Considering the
multitude of variables and levels, the experiments were implemented
using the fractional factorial design. A representative model of the
research samples were established for input task testing. The findings
of this study showed that participants with low typing speed primarily
relied on vision to recognize the keys, and those with high typing
speed relied on tactile feedback that was affected by the thickness and
force of the keys. In the objective and subjective evaluation, a
combination of keyboard design factors that might result in higher
performance and satisfaction was identified (L-shaped, 3mm, and
60±10g) as the optimal combination. The learning curve was analyzed
to make a comparison with a traditional standard keyboard to
investigate the influence of user experience on keyboard operation.
The research results indicated the optimal combination provided input
performance to inferior to a standard keyboard. The results could serve
as a reference for the development of related products in industry and
for applying comprehensively to touch devices and input interfaces
which are interacted with people