Characterization of the Line Configuration in Wired Communication Networks

Abstract

This thesis presents an algorithm to identify the full configuration of a wired transmission line from its frequency response. It is assumed that the line can have up to two bridged taps. Each bridged tap divides the main line to two segments, and with two bridged taps there will be at most three segments in the main line. Furthermore, each segment of the main line and the bridged taps can have three different gauges. The problem of characterizing the line configuration is concerned with identifying each segment (main line segments and bridged taps) in terms of its length and gauge. The problem is solved in two phases: initialization and optimization. The algorithm can be used as single ended line testing, which means the line can be characterized by performing a simple test from the central office. Simulations demonstrate the accuracy of the proposed method

    Similar works