Large blow-up sets for the prescribed Q-curvature equation in the Euclidean space

Abstract

Let m2m\ge 2 be an integer. For any open domain ΩR2m\Omega\subset\mathbb{R}^{2m}, non-positive function φC(Ω)\varphi\in C^{\infty}(\Omega) such that Δmφ0\Delta^m \varphi \equiv 0 and bounded sequence (Vk)L(Ω)(V_k) \subset L^\infty (\Omega) we prove the existence of a sequence of functions (uk)C2m1(Ω)(u_k) \subset C^{2m-1}(\Omega) solving the Liouville equation of order 2m (Δ)muk=Vke2mukinΩ,lim supkΩe2mukdx<, (-\Delta)^m u_k = V_k e^{2m u_k} in \Omega, \limsup_{k\to\infty} \int_{\Omega} e^{2m u_k} dx < \infty, and blowing up exactly on the set Sφ:={xΩ:φ(x)=0}S_{\varphi} := \{x\in\Omega : \varphi(x) = 0\}, i.e. limkuk(x)=+forxSφandlimkuk(x)=forxΩSφ, \lim_{k\to\infty} u_k(x) = +\infty for x\in S_{\varphi} and \lim_{k\to\infty} u_k(x) = -\infty for x\in\Omega\setminus S_{\varphi}, thus showing that a result of Adimurthi, Robert and Struwe is sharp. We extend this result to the boundary of Ω\Omega and to the case Ω=R2m\Omega = \mathbb{R}^{2m}. Several related problems remain open

    Similar works