Preventative ibandronate treatment has the most beneficial effect on the microstructure of bone in experimental tumor osteolysis

Abstract

We investigated the effect of ibandronate on three-dimensional (3-D) microstructure and bone mass in experimentally induced tumor osteolysis. Walker carcinosarcoma cells were implanted into the left femur of female rats that received 26-day ibandronate pretreatment followed by continued therapy or ibandronate posttreatment only. A tumor-only group received isotonic saline. At endpoint, excised femurs were scanned using microcomputed tomography (μCT) to assess bone volume density, bone mineral content, trabecular number/thickness, and separation for cortical plus trabecular bone or trabecular bone alone. Compared with the nonimplanted right femur, bone volume and surface density and trabecular number and thickness were reduced in the distal left femur following tumor cell implantation. μCT analysis revealed greater cortical and trabecular bone mineral content in the preventative and interventional (pre-post tumor) ibandronate group, and the interventional (post-tumor) ibandronate group, versus the tumor-only group. Bone volume density was significantly higher in pre-post and post-tumor groups compared to the tumor-only group. After preventative and interventional ibandronate, bone volume density and trabecular thickness were 13% and 60% greater, respectively, than in the post-tumor treatment group. 3-D μCT images confirmed microstructural changes. We conclude that combined interventional and preventative ibandronate preserves bone strength and integrity more than intervention alon

    Similar works