We study drag effect in a system of two electrically isolated quantum point
contacts (QPC), coupled by Coulomb interactions. Drag current exhibits maxima
as a function of QPC gate voltages when the latter are tuned to the transitions
between quantized conductance plateaus. In the linear regime this behavior is
due to enhanced electron-hole asymmetry near an opening of a new conductance
channel. In the non-linear regime the drag current is proportional to the shot
noise of the driving circuit, suggesting that the Coulomb drag experiments may
be a convenient way to measure the quantum shot noise. Remarkably, the
transition to the non-linear regime may occur at driving voltages substantially
smaller than the temperature.Comment: 6 pages, 2 figure