We present an efficient method to generate large simulations of the Epoch of
Reionization (EoR) without the need for a full 3-dimensional radiative transfer
code. Large dark-matter-only simulations are post-processed to produce maps of
the redshifted 21cm emission from neutral hydrogen. Dark matter haloes are
embedded with sources of radiation whose properties are either based on
semi-analytical prescriptions or derived from hydrodynamical simulations. These
sources could either be stars or power-law sources with varying spectral
indices. Assuming spherical symmetry, ionized bubbles are created around these
sources, whose radial ionized fraction and temperature profiles are derived
from a catalogue of 1-D radiative transfer experiments. In case of overlap of
these spheres, photons are conserved by redistributing them around the
connected ionized regions corresponding to the spheres. The efficiency with
which these maps are created allows us to span the large parameter space
typically encountered in reionization simulations. We compare our results with
other, more accurate, 3-D radiative transfer simulations and find excellent
agreement for the redshifts and the spatial scales of interest to upcoming 21cm
experiments. We generate a contiguous observational cube spanning redshift 6 to
12 and use these simulations to study the differences in the reionization
histories between stars and quasars. Finally, the signal is convolved with the
LOFAR beam response and its effects are analyzed and quantified. Statistics
performed on this mock data set shed light on possible observational strategies
for LOFAR.Comment: 18 pages, 21 figures, submitted to MNRAS For high-resolution images
follow "http://www.astro.rug.nl/~thomas/eormap.pdf