Microwave Filters Based on New Design Concepts in Several Technologies with Emphasis on the Printed Ridge Gap Waveguide Technology

Abstract

Microwave filters have been an interesting research topic for more than half a century. Since any communication system is required to use some microwave filters, considerable effort is being made to optimize the performance and size of these filters. As operating frequency is on the rise, filter design becomes more challenging with the demand for low insertion losses and low cost. As low cost might require the use of printed circuit technology, high performance demands waveguide technology that drives the cost to unacceptable levels. There is a need for a new technology that achieves both requirements of low cost and high performance. The new technology of ridge gap waveguide that was proposed in 2011 shows promising characteristics as a new guiding structure, especially for high-frequency bands. Therefore, it is necessary to design and propose classic or even new filtering devices on this technology. Here, we propose the use of this technology to design practical and efficient microwave filters. The work of this thesis can be divided into three major parts: (1) Developing efficient codes and methods to optimize the computationally expensive structure of ridge gap waveguide or any other large-scale microwave filter device. (2) Characterizing cavity structures on ridge gap waveguide and using them in the design of simple microwave filters. (3) The third part will discuss more advanced and practical filters, especially using printed ridge gap waveguide technology. The ultimate goal of this thesis is to design and propose state of the art designs in the field of microwave filters that can satisfy the requirements of today’s advanced communication systems and to be cost efficient and compete with other rival technologies. We achieved these objectives using efficient optimization, efficient design techniques, and fabrication of the models using advanced technology

    Similar works