Application Layer Architectures for Disaster Response Systems

Abstract

Traditional disaster response methods face several issues such as limited situational awareness, lack of interoperability and reliance on voice-oriented communications. Disaster response systems (DRSs) aim to address these issues and assist responders by providing a wide range of services. Since the network infrastructure in disaster area may become non-operational, mobile ad-hoc networks (MANETs) are the only alternative to provide connectivity and other network services. Because of the dynamic nature of MANETs the applications/services provided by DRSs should be based on distributed architectures. These distributed application/services form overlays on top of MANETs. This thesis aims to improve three main aspect of DRSs: interoperability, automation, and prioritization. Interoperability enables the communication and collaboration between different rescue teams which improve the efficiency of rescue operations and avoid potential interferences between teams. Automation allows responders to focus more on their tasks by minimizing the required human interventions in DRSs. Automation also allows machines to operate in areas where human cannot because of safety issues. Prioritization ensures that emergency services (e.g. firefighter communications) in DRSs have higher priority to receive resources (e.g. network services) than non-emergency services (e.g. new reporters’ communications). Prioritizing vital services in disaster area can save lives. This thesis proposes application layer architectures that enable three important services in DRSs and contribute to the improvement of the three aforementioned aspects of DRSs: overlay interconnection, service discovery and differentiated quality of service (QoS). The overlay interconnection architecture provides a distributed and scalable mechanism to interconnect end-user application overlays and gateway overlays in MANETs. The service discovery architecture is a distributed directory-based service discovery mechanism based on the standard Domain Name System (DNS) protocol. Lastly, a differentiated QoS architecture is presented that provides admission control and policy enforcement functions based on a given prioritization scheme. For each of the provided services, a motivation scenario is presented, requirements are derived and related work is evaluated with respect to these requirements. Furthermore, performance evaluations are provided for each of the proposed architectures. For the overlay interconnection architecture, a prototype is presented along with performance measurements. The results show that our architecture achieves acceptable request-response delays and network load overhead. For the service discovery architecture, extensive simulations have been run to evaluate the performance of our architecture and to compare it with the Internet Engineering Task Force (IETF) directory-less service discovery proposal based on Multicast DNS. The results show that our architecture generates less overall network load and ensures successful discovery with higher probability. Finally, for the differentiated QoS architecture, simulations results show that our architecture not only enables differentiated QoS, it also improves overall QoS in terms of the number of successful overlay flows

    Similar works