research

Conditional degradation of SDE2 by the Arg/N-End rule pathway regulates stress response at replication forks

Abstract

Multiple pathways counteract DNA replication stress to prevent genomic instability and tumorigenesis. The recently identified human SDE2 is a genome surveillance protein regulated by PCNA, a DNA clamp and processivity factor at replication forks. Here, we show that SDE2 cleavage after its ubiquitin-like domain generates Lys-SDE2^(Ct), the C-terminal SDE2 fragment bearing an N-terminal Lys residue. Lys-SDE2^(Ct) constitutes a short-lived physiological substrate of the Arg/N-end rule proteolytic pathway, in which UBR1 and UBR2 ubiquitin ligases mediate the degradation. The Arg/N-end rule and VCP/p97^(UFD1-NPL4) segregase cooperate to promote phosphorylation-dependent, chromatin-associated Lys-SDE2^(Ct) degradation upon UVC damage. Conversely, cells expressing the degradation-refractory K78V mutant, Val-SDE2^(Ct), fail to induce RPA phosphorylation and single-stranded DNA formation, leading to defects in PCNA-dependent DNA damage bypass and stalled fork recovery. Together, our study elucidates a previously unappreciated axis connecting the Arg/N-end rule and the p97-mediated proteolysis with the replication stress response, working together to preserve replication fork integrity

    Similar works