research

Constraints on aerosol nitrate photolysis as a potential source of HONO and NO_x

Abstract

The concentration of nitrogen oxides (NO_x) plays a central role in controlling air quality. On a global scale, the primary sink of NO_x is oxidation to form HNO_3. Gas-phase HNO_3 photolyses slowly with a lifetime in the troposphere of 10 days or more. However, several recent studies examining HONO chemistry have proposed that particle-phase HNO_3 undergoes photolysis 10–300 times more rapidly than gas-phase HNO_3. We present here constraints on the rate of particle-phase HNO_3 photolysis based on observations of NO_x and HNO_3 collected over the Yellow Sea during the KORUS-AQ study in summer 2016. The fastest proposed photolysis rates are inconsistent with the observed NO_x to HNO_3 ratios. Negligible to moderate enhancements of the HNO_3 photolysis rate in particles, 1–30 times faster than in the gas phase, are most consistent with the observations. Small or moderate enhancement of particle-phase HNO_3 photolysis would not significantly affect the HNO_3 budget but could help explain observations of HONO and NO_x in highly aged air

    Similar works