research

The dominant origin of diffuse Lyα halos around Lyα emitters explored by spectral energy distribution fitting and clustering analysis

Abstract

The physical origin of diffuse Lyα halos (LAHs) around star-forming galaxies is still a matter of debate. We present the dependence of LAH luminosity [L(Lyα)_H] on the stellar mass (M⋆), star formation rate, color excess [E(B − V)⋆], and dark matter halo mass (M_h) of the parent galaxy for ∼900 Lyα emitters (LAEs) at z ∼ 2 divided into ten subsamples. We calculate L(Lyα)_H using the stacked observational relation between L(Lyα)H and central Lyα luminosity of Momose et al. (2016, MNRAS, 457, 2318), which we find agrees with the average trend of VLT/MUSE-detected individual LAEs. We find that our LAEs have relatively high L(Lyα)_H despite low M⋆ and M_h, and that L(Lyα)_H remains almost unchanged with M⋆ and perhaps with M_h. These results are incompatible with the cold stream (cooling radiation) scenario and the satellite-galaxy star-formation scenario, because the former predicts fainter L(Lyα)_H and both predict steeper L(Lyα)_H vs. M⋆ slopes. We argue that LAHs are mainly caused by Lyα photons escaping from the main body and then scattering in the circum-galactic medium. This argument is supported by LAH observations of Hα emitters (HAEs). When LAHs are taken into account, the Lyα escape fractions of our LAEs are about ten times higher than those of HAEs with similar M⋆ or E(B − V)⋆, which may partly arise from lower H I gas masses implied from lower M_h at fixed M⋆, or from another Lyα source in the central part

    Similar works