research

W. M. Keck Observatory's next-generation adaptive optics facility

Abstract

We report on the preliminary design of W.M. Keck Observatory's (WMKO's) next-generation adaptive optics (NGAO) facility. This facility is designed to address key science questions including understanding the formation and evolution of today's galaxies, measuring dark matter in our galaxy and beyond, testing the theory of general relativity in the Galactic Center, understanding the formation of planetary systems around nearby stars, and exploring the origins of our own solar system. The requirements derived from these science questions have resulted in NGAO being designed to have near diffraction-limited performance in the near-IR (K-Strehl ~ 80%) over narrow fields (< 30" diameter) with modest correction down to ~ 700 nm, high sky coverage, improved sensitivity and contrast and improved photometric and astrometric accuracy. The resultant key design features include multi-laser tomography to measure the wavefront and correct for the cone effect, open loop AO-corrected near-IR tip-tilt sensors with MEMS deformable mirrors (DMs) for high sky coverage, a high order MEMS DM for the correction of atmospheric and telescope static errors to support high Strehls and high contrast companion sensitivity, point spread function (PSF) calibration to benefit quantitative astronomy, a cooled science path to reduce thermal background, and a high-efficiency science instrument providing imaging and integral field spectroscopy

    Similar works