Die nicht-konventionelle Hefe P. ciferrii produziert große Mengen der tetra-acetylierten Sphingoidbase Phytosphingosin (TAPS). Sphingoidbasen sind essentielle Komponenten des stratum corneums, der multilamellaren Barriere der menschlichen Haut, und daher in der Kosmetik-Industrie von großem Interesse. Im Rahmen dieser Arbeit sollte die biotechnologische Produktion der Sphingoidbasen Phytosphingosin, Sphinganin und Sphingosin auf molekularbiologischer Ebene in P. ciferrii charakterisiert und optimiert werden. Die Hefe P. ciferrii konnte durch Etablierung einer einfachen und hoch-effizienten Transformations-Methode auf genetischer Ebene leicht zugänglich gemacht werden. Durch Inaktivierung des für NHEJ essentiellen PcLIG4 Gens konnte die Effizienz zielgerichteter genomischer Integrationen von transformierten DNA-Konstrukten von 1 % auf 87 % erhöht werden. Die Etablierung des Cre-loxP Systems erlaubte das mehrfache Verwenden eines Selektions-Markers wodurch sukzessiv mehrere genomische Integrationen in einem Stamm ermöglicht wurden. Durch diese Errungenschaften konnte das Ziel „Optimierung der Sphingoidbasen-Produktion der nicht-konventionellen Hefe P. ciferrii“ im Folgenden erfolgreich verfolgt werden. Der initiale Schritt der Sphingoidbasen-Biosynthese ist die von der Serin-Palmitoyl-Transferase katalysierte Kondensation von L-Serin und Palmitoyl-CoA. Durch die Deletion von Genen, die am L-Serin-Katabolismus von P. ciferrii beteiligt sind (PcSHM1, PcSHM2und PcCHA1), konnte die de novo Sphingoidbasen-Biosynthese optimiert werden und führte in einem lig4? Stamm zu einer etwa dreifachen Erhöhung der TAPS-Produktion. Weitere Ansätze den (vermutlich durch L-Serin feed back regulierten) L-Serin-Biosyntheseweg bzw. die in vivo L-Serin-Verfügbarkeit zu optimieren, führten nicht zu einer gesteigerten TAPS-Produktion. Durch weitere Deletion und Überexpression von Genen des Sphingolipid-Stoffwechsels konnte die TAPS-Produktion jedoch um ein Vielfaches verbessert werden. So konnte ein Stamm konstruiert werden, der die Gene PcLCB1, PcLCB2 und PcSYR2 überexprimiert und Deletionen der Gene PcSHM1, PcSHM2, PcCHA1, PcLCB4 und PcORM12 trägt. Dieser Stamm (CSS.L4.O.L2.L1.S2) wies eine mehr als fünffach erhöhte maximale spezifische TAPS-Produktbildungsrate (q Pmax ) auf und produzierte mit 2 g * L rund siebenmal mehr TAPS als der lig4? Ausgangsstamm, weshalb ein Einsatz dieses Stammes für die industrielle TAPS-Produktion denkbar wäre. Ausgehend von einem für die TAPS- (und somit Sphingoidbasen-) Produktion optimierten Stamm sollten Stämme mit optimierter TriASa- oder TriASo-Produktion für industrielle Zwecke generiert werden. Es stellte sich allerding heraus, dass erhöhte Mengen dieser Sphingoidbasen wahrscheinlich wachstumshemmend für P. ciferrii sind, weshalb eine weitere Produktions-Optimierung nicht ohne Weiteres möglich ist. In einem Laborstamm gelang es jedoch, durch Konstruktion und anschließende Transformation eines optimierten integrativen Plasmids (trägt die Gene, die für die Produktion von Sphingosin bzw. TriASo nötig sind) eine TriASo-Produktion von bis zu 30 mg * g (BTM) zu erzielen, wobei gleichzeitig die Bildung des Nebenprodukts TriASa auf weniger als 4 mg * g (BTM)reduziert wurde. Weiterhin konnte durch Deletion von PcSCS7 in einem TriASo-Produktionsstamm die TriASa-Produktion mehr als vierfach reduziert werden. Die Bildung eines weiteren von P. ciferrii gebildeten Nebenproduktes [Tri-Acetyl-Sphingadienin (TriASd)] konnte durch Deletion des PcSLD1 Gens unterbunden werden. Nach Inaktivierung von PcSCH9 konnte eine fast 20 %ige Verbesserung der TriASo-Produktion erreicht werden. Es konnten zwei putative Acetyl-Transferasen identifiziert werden (PcAft2 und PcSli1), die an der Acetylierung von Phytosphingosin (zu TAPS), Sphinganin (zu TriASa) und Sphingosin (zu TriASo) beteiligt sind. Die Aufklärung und Optimierung dieser von PcAtf2 und PcSli1 katalysierten Schritte sind vielversprechende Ansatzpunkte die Sphingoidbasen-Produktion in P. ciferrii weiter zu optimieren