Antiferromagnetism couples electron spin to its orbital motion, thus allowing
excitation of electron-spin transitions by an ac electric rather than magnetic
field - with absorption, exceeding that of common electron spin resonance at
least by four orders of magnitude. In addition to potential applications in
spin electronics, this phenomenon may be used as a spectroscopy to study
antiferromagnetic materials of interest - from chromium to borocarbides,
cuprates, iron pnictides, and organic and heavy fermion conductors.Comment: the journal print versio