Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing

Abstract

The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In particular, parallel computing are forms of computation operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently. In this dissertation, we report a series of new nanophotonic developments using the advanced parallel computing techniques. The applications include the structure optimizations at the nanoscale to control both the electromagnetic response of materials, and to manipulate nanoscale structures for enhanced field concentration, which enable breakthroughs in imaging, sensing systems (chapter 3 and 4) and improve the spatial-temporal resolutions of spectroscopies (chapter 5). We also report the investigations on the confinement study of optical-matter interactions at the quantum mechanical regime, where the size-dependent novel properties enhanced a wide range of technologies from the tunable and efficient light sources, detectors, to other nanophotonic elements with enhanced functionality (chapter 6 and 7)

    Similar works