research

Automatic System Testing of Programs without Test Oracles

Abstract

Metamorphic testing has been shown to be a simple yet effective technique in addressing the quality assurance of applications that do not have test oracles, i.e., for which it is difficult or impossible to know what the correct output should be for arbitrary input. In metamorphic testing, existing test case input is modified to produce new test cases in such a manner that, when given the new input, the application should produce an output that can be easily be computed based on the original output. That is, if input x produces output f (x), then we create input x' such that we can predict f (x') based on f(x); if the application does not produce the expected output, then a defect must exist, and either f (x) or f (x') (or both) is wrong. In practice, however, metamorphic testing can be a manually intensive technique for all but the simplest cases. The transformation of input data can be laborious for large data sets, or practically impossible for input that is not in human-readable format. Similarly, comparing the outputs can be error-prone for large result sets, especially when slight variations in the results are not actually indicative of errors (i.e., are false positives), for instance when there is non-determinism in the application and multiple outputs can be considered correct. In this paper, we present an approach called Automated Metamorphic System Testing. This involves the automation of metamorphic testing at the system level by checking that the metamorphic properties of the entire application hold after its execution. The tester is able to easily set up and conduct metamorphic tests with little manual intervention, and testing can continue in the field with minimal impact on the user. Additionally, we present an approach called Heuristic Metamorphic Testing which seeks to reduce false positives and address some cases of non-determinism. We also describe an implementation framework called Amsterdam, and present the results of empirical studies in which we demonstrate the effectiveness of the technique on real-world programs without test oracles

    Similar works