research

Trajectory Prediction Accuracy and Error Sources for Regional Jet Descents

Abstract

The Efficient Descent Advisor (EDA) controller automation tool generates trajectory-based speed, path, and altitude-profile advisories to facilitate efficient, continuous descents into congested terminal airspace. While prior field trials have assessed the trajectory prediction accuracy for large jet (i.e., Boeing and Airbus) types, smaller (i.e., regional and business) jet types present unique challenges involving different descent procedures and Flight Management System (FMS) capabilities. This paper quantifies the trajectory prediction accuracy for small jet revenue flight descents based on SkyWest Canadair Regional Jet 200, 700, and 900 aircraft arrivals to Denver in the fall of 2010. Post flight test data analysis and SkyWest pilot interviews uncovered unexpected variation between flight crews due to different interpretations of (1) which fixed flight path angle (FPA) to fly based on the flight trial procedure and (2) how to fly the descent to achieve the target FPA. Pilot reports were used to select a subset of flights where pilots indicated an FPA according to the flight trial procedure to remove the unexpected variation due to (1) to focus on (2). Results for the subset for en-route descents, from prior to top of descent to the meter fix 30 to 130 nmi downstream, indicate that aircraft arrived to the meter fix six seconds early with about a twelve second standard deviation. Large FPA errors up to one degree relative to the EDA flight trial procedure were detected after the flight trial as a characteristic of the unexpected variation. It is recommended that quantitative validation be performed during future flight trials so that experimental procedures can be adjusted if unexpected results are detected

    Similar works