research

Message Latency Characterization of a Distributed Live, Virtual, Constructive Simulation Environment

Abstract

A distributed test environment incorporating Live, Virtual, Constructive, (LVC) concepts was developed to execute standalone and integrated simulations and flight-tests that support unmanned aircraft research for NASAs Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) Project. The LVC components form the core infrastructure that supports simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing distributed assets. The LVC concepts used for the UAS in the NAS project include live aircraft, flight simulators, and virtual air traffic control assets operating at facilities distributed across multiple NASA Centers. With a distributed network, however, there is a concern that message latency could impact the realism of a simulation and its data. The latencies associated with sending data among these distributed facilities were, therefore, measured to ensure that they fall within acceptable parameters. Several live and virtual test assets were integrated into the LVC infrastructure including NASA Armstrongs Ikhana MQ-9 unmanned aircraft, NASA Glenns S3-B manned aircraft, and the B747 flight simulator at NASA Ames. Average latencies from 100 to 150 milliseconds were observed between the LVC System running at NASA Ames and each of the participating NASA Centers under a light-to-moderate (fifty aircraft) traffic sample

    Similar works