research

Joint continuity of the local times of fractional Brownian sheets

Abstract

Let BH={BH(t),tR+N}B^H=\{B^H(t),t\in{{\mathbb{R}}_+^N}\} be an (N,d)(N,d)-fractional Brownian sheet with index H=(H1,...,HN)(0,1)NH=(H_1,...,H_N)\in(0,1)^N defined by BH(t)=(B1H(t),...,BdH(t))(tR+N),B^H(t)=(B^H_1(t),...,B^H_d(t)) (t\in {\mathbb{R}}_+^N), where B1H,...,BdHB^H_1,...,B^H_d are independent copies of a real-valued fractional Brownian sheet B0HB_0^H. We prove that if d<=1NH1d<\sum_{\ell=1}^NH_{\ell}^{-1}, then the local times of BHB^H are jointly continuous. This verifies a conjecture of Xiao and Zhang (Probab. Theory Related Fields 124 (2002)). We also establish sharp local and global H\"{o}lder conditions for the local times of BHB^H. These results are applied to study analytic and geometric properties of the sample paths of BHB^H.Comment: Published in at http://dx.doi.org/10.1214/07-AIHP131 the Annales de l'Institut Henri Poincar\'e - Probabilit\'es et Statistiques (http://www.imstat.org/aihp/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works