research

Bouncing trimer: a random self-propelled particle, chaos and periodical motions

Abstract

A trimer is an object composed of three centimetrical stainless steel beads equally distant and is predestined to show richer behaviours than the bouncing ball or the bouncing dimer. The rigid trimer has been placed on a plate of a electromagnetic shaker and has been vertically vibrated according to a sinusoidal signal. The horizontal translational and rotational motions of the trimer have been recorded for a range of frequencies between 25 and 100 Hz while the amplitude of the forcing vibration was tuned for obtaining maximal acceleration of the plate up to 10 times the gravity. Several modes have been detected like e.g. rotational and pure translational motions. These modes are found at determined accelerations of the plate and do not depend on the frequency. By recording the time delays between two successive contacts when the frequency and the amplitude are fixed, a mapping of the bouncing regime has been constructed and compared to that of the dimer and the bouncing ball. Period-2 and period-3 orbits have been experimentally observed. In these modes, according to observations, the contact between the trimer and the plate is persistent between two successive jumps. This persistence erases the memory of the jump preceding the contact. A model is proposed and allows to explain the values of the particular accelerations for which period-2 and period-3 modes are observed. Finally, numerical simulations allow to reproduce the experimental results. That allows to conclude that the friction between the beads and the plate is the major dissipative process.Comment: 22 pages, 10 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019