Obstacle Detection, Tracking and Avoidance for a Teleoperated UAV

Abstract

In this paper, we present a collision-free indoor navigation algorithm for teleoperated multirotor Unmanned Aerial Vehicles (UAVs). Assuming an obstacle rich environment, the algorithm keeps track of detected obstacles in the local surroundings of the robot. The detection part of the algorithm is based on measurements from an RGB-D camera and a Bin-Occupancy filter capable of tracking an unspecified number of targets. We use the estimate of the robot’s velocity to update the obstacles state when they leave the direct field of view of the sensor. The avoidance part of the algorithm is based on the Model Predictive Control approach. By predicting the possible future obstacles states, it filters the operator commands to prevent collisions. The method is validated on a platform equipped with its own computational unit, which makes it selfsufficient in terms of external CPUs

    Similar works

    Full text

    thumbnail-image

    Available Versions