research

New practical algorithms for the approximate shortest lattice vector

Abstract

We present a practical algorithm that given an LLL-reduced lattice basis of dimension n, runs in time O(n3(k=6)k=4+n4) and approximates the length of the shortest, non-zero lattice vector to within a factor (k=6)n=(2k). This result is based on reasonable heuristics. Compared to previous practical algorithms the new method reduces the proven approximation factor achievable in a given time to less than its fourthth root. We also present a sieve algorithm inspired by Ajtai, Kumar, Sivakumar [AKS01]

    Similar works